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Figure 1: Diagram of data processing and analysis flow in VizML, starting from (1) the original Plotly Community Feed API
endpoints, proceeding to (2) the deduplicated dataset-visualization pairs, (3a) features describing each individual column, pair
of columns, and dataset, (3b) design choices extracted from visualizations, (4) task-specific models trained on these features,
and (5) potential recommended design choices.

ABSTRACT
Visualization recommender systems aim to lower the barrier
to exploring basic visualizations by automatically generating
results for analysts to search and select, rather than manu-
ally specify. Here, we demonstrate a novel machine learning-
based approach to visualization recommendation that learns
visualization design choices from a large corpus of datasets
and associated visualizations. First, we identify five key de-
sign choices made by analysts while creating visualizations,
such as selecting a visualization type and choosing to encode
a column along the X- or Y-axis. We train models to predict
these design choices using one million dataset-visualization
pairs collected from a popular online visualization platform.
Neural networks predict these design choices with high ac-
curacy compared to baseline models. We report and interpret
feature importances from one of these baseline models. To
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evaluate the generalizability and uncertainty of our approach,
we benchmark with a crowdsourced test set, and show that
the performance of our model is comparable to human per-
formance when predicting consensus visualization type, and
exceeds that of other visualization recommender systems.
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1 INTRODUCTION
Knowledge workers across domains – from business to jour-
nalism to scientific research – increasingly use data visu-
alization to generate insights, communicate findings, and
make decisions [9, 26, 58]. Yet, many visualization tools have
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steep learning curves due to a reliance on manual specifica-
tion through code [7, 68] or clicks [2, 62]. As a result, data
visualization is often inaccessible to the growing number of
domain experts who lack the time or background to learn
sophisticated tools.
While required to create bespoke visualizations, manual

specification is unnecessary for many common use cases
such as preliminary data exploration and the creation of
basic visualizations. To support these use cases in which
speed and breadth of exploration are more important than
customizability [63], systems can leverage the finding that
the properties of a dataset influence how it can and should
be visualized. For example, prior research has shown that
the accuracy with which visual channels (e.g. position and
color) encode data depends on the type [5, 15, 67] and distri-
bution [28] of data values.
Most recommender systems encode these visualization

guidelines as collection of “if-then” statements, or rules [21],
to automatically generate visualizations for analysts to search
and select, rather than manually specify [64]. For example,
APT [35], BOZ [13], and SAGE [52] generate and rank vi-
sualizations using rules informed by perceptual principles.
Recent systems such as Voyager [72, 73], Show Me [34], and
DIVE [23] extend these approaches with support for column
selection. While effective for certain use cases [72], these
rule-based approaches face limitations such as costly rule cre-
ation and the combinatorial explosion of possible results [1].

In contrast, machine learning (ML)-based systems directly
learn the relationship between data and visualizations by
training models on analyst interaction. While recent sys-
tems like DeepEye [33], Data2Vis [17], and Draco-Learn [37]
are exciting, they do not learn to make visualization design
choices as an analyst would, which impacts interpretabil-
ity and ease of integration into existing systems. Further-
more, because these systems are trained with annotations
on rule-generated visualizations in controlled settings, they
are limited by the quantity and quality of data.
We introduce VizML, a ML-based approach to visualiza-

tion recommendation using a large corpus of datasets and
associated visualizations. To begin, we describe visualization
as a process of making design choices that maximize effec-
tiveness, which depends on dataset, task, and context. Then,
we formulate visualization recommendation as a problem of
developing models that learn to make design choices.

We train and test machine learning models using one mil-
lion unique dataset-visualization pairs from the Plotly Com-
munity Feed [46]. We describe our process of collecting and
cleaning this corpus, extracting features from each dataset,
and extracting five key design choices from corresponding
visualizations. Our learning task is to optimize models that
use features of datasets to predict these choices.

Neural networks trained on 60% of the corpus achieve
∼ 70 − 95% accuracy at predicting design choices in a sep-
arate 20% test set. This performance exceeds that of four
simpler baseline models, which themselves out-perform ran-
dom chance. We report feature importances from one of
these baseline models, interpret the contribution of features
to a given task, and relate them to existing research.
We evaluate the generalizability and uncertainty of our

model by benchmarking against a crowdsourced test set. We
construct this test set by randomly selecting datasets from
Plotly, visualizing each as a bar, line, and scatter plot, and
measuring the consensus of Mechanical Turk workers. Using
a scoring metric that adjusts for the degree of consensus, we
find that VizML performs comparably to Plotly users and
Mechanical Turkers, and outperforms two rule-based and
two ML-based visualization recommendation systems.

To conclude, we discuss interpretations, applications, and
limitations of our initial machine learning approach to visu-
alization recommendation. We also suggest directions for fu-
ture research, such as aggregating public training and bench-
marking corpora, integrating separate recommender models
into an end-to-end system, and refining definitions of visual-
ization effectiveness.

2 PROBLEM FORMULATION
Data visualization communicates information by represent-
ing data with visual elements. These representations are
specified using encodings that map from data to the retinal
properties (e.g. position, length, or color) of graphical marks
(e.g. points, lines, or rectangles) [5, 12].

Concretely, consider a dataset that describes 406 automo-
biles (rows) with eight attributes (columns) such as miles
per gallon (MPG), horsepower (Hp), and weight in pounds
(Wgt) [50]. To create a scatterplot showing the relationship
between MPG and Hp, an analyst encodes each pair of data
points with the position of a circle on a 2D plane, while also
specifying other retinal properties such as size and color:
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tools. But a scatterplot is specified with the Vega-lite [55]
grammar by selecting a mark type and fields to be encoded
along the x- and y-axes, and in Tableau [62] by placing the
two columns onto the respective column and row shelves.

That is, to create basic visualizations in many grammars or
tools, an analyst specifies higher-level design choices, which
we define as statements that compactly and uniquely specify
a bundle of lower-level encodings. Equivalently, each gram-
mar or tool affords a design space of visualizations, which a
user constrains by making choices.
We formulate basic visualization of a dataset d as a set

of interrelated design choices C = {c}. However, not all de-
sign choices result in valid visualizations – some choices are
incompatible with each other. For instance, encoding a cate-
gorical column with the Y position of a line mark is invalid.
Therefore, the set of choices that result in valid visualizations
is a subset of the space of all possible choices.

The effectiveness of a visualization can be defined by infor-
mational measures such as efficiency, accuracy, and memora-
bility [6, 74], or emotive measures like engagement [19, 27].
Prior research also shows that effectiveness is informed by
low-level perceptual principles [15, 22, 31, 51] and dataset
properties [28, 54], in addition to contextual factors such as
task [3, 28, 53], aesthetics [14], domain [24], audience [60],
and medium [36, 57]. In other words, an analyst makes de-
sign choices Cmax that maximize visualization effectiveness
given a dataset and contextual factors.

But making design choices can be expensive. A goal of vi-
sualization recommendation is to reduce the cost of creating
visualizations by automatically suggesting a subset of design
choices Cr ec ⊆ C that maximize effectiveness. Trained with
a corpus of datasets {d} and corresponding design choices
{C}, ML-based recommender systems treat recommendation
as an optimization problem, such that predictedCr ec ∼ Cmax .
A more detailed formulation of the learning task is included
in the Supplementary Material (SM) Section S1.

3 RELATEDWORK
We relate and compare our work to existing Rule-based Visu-
alization Recommender Systems and ML-based Visualization
Recommender Systems.

Rule-based Visualization Recommender Systems
Visualization recommender systems either suggest data queries
(selecting what data to visualize) or visual encodings (how
to visualize selected data) [71]. Data query recommenders
vary widely in their approaches [59, 69], with recent systems
optimizing statistical “utility” functions [18, 65]. Though
specifying data queries is crucial to visualization, it is a dis-
tinct task from design choice recommendation.
Most visual encoding recommenders implement guide-

lines informed the seminal work of Bertin [5] and Cleveland

and McGill [15]. This approach is exemplified by Mackin-
lay’s APT [35] – the ur-recommender system – which enu-
merates, filters, and scores visualizations using expressive-
ness and perceptual effectiveness criteria. The closely related
SAGE [52], BOZ [13], and ShowMe [34] support more data,
encoding, and task types. Recently, hybrid systems such
as Voyager [71–73], Explore in Google Sheets [20, 66],
VizDeck [43], andDIVE [23] combine visual encoding rules
with the recommendation of visualizations that include non-
selected columns.

Though effective for many use cases, these systems suffer
from three major limitations. First, visualization is a complex
process that may require modelling non-linear relationships
that are difficult to capture with simple rules. Second, craft-
ing rule sets is a costly process that relies on expert judgment.
Lastly, as the dimension of input data increases, the com-
binatorial nature of rules result in an explosion of possible
recommendations.

ML-based Visualization Recommender Systems
The guidelines encoded by rule-based systems often derive
from experimental findings and expert experience. Therefore,
an indirect manner, heuristics distill best practices learned
from another analyst’s experience of creating and consuming
visualizations. Instead of aggregating best practices learned
from data and representing them in a system with rules,
ML-based systems propose to train models that learn di-
rectly from data and can be embedded into systems as-is.
A schematic comparison of ML-based visualization recom-
mender systems can be found in the SM Section S2.

DeepEye [33] combines rule-based visualization gener-
ation with models trained to 1) classify a visualization as
“good” or “bad” and 2) rank lists of visualizations. The Deep-
Eye corpus consists of 33,412 bivariate visualizations of columns
drawn from 42 public datasets. 100 students annotated these
visualizations as good/bad, and compared 285,236 pairs. These
annotations, combined with 14 features for each column pair,
train a decision tree for classification and a ranking neural
network [10] for the “learning to rank” task.

Data2Vis [17] uses a neural machine translation approach
to create a sequence-to-sequence model that maps JSON-
encoded datasets to Vega-lite visualization specifications.
The model is trained using 4,300 automatically generated
Vega-Lite examples, consisting of 1-3 variables, generated
from 11 distinct datasets. Model predictions are qualitatively
validated by examining the visualizations generated from 24
common datasets.

Draco-Learn [37] learns trade-offs between constraints
in Draco, a formal model that represents 1) visualizations
as logical facts and 2) design guidelines as hard and soft
constraints. Constraint weights are learned using a ranking



support vector machine trained on ranked pairs of visualiza-
tions harvested from graphical perception studies [28, 53].
Draco then recommends visualizations that satisfy these con-
straints by solving a combinatorial optimization problem.

VizML differs from these systems in three major respects.
In terms of the learning task, DeepEye learns to classify and
rank visualizations, Data2Vis learns an end-to-end genera-
tion model, and Draco-Learn learns soft constraints weights.
By learning to predict design choices, VizML models are eas-
ier to quantitatively validate, provide interpretable measures
of feature importance, and can be more easily integrated into
visualization systems.

In terms of data quantity, the VizML training corpus is or-
ders of magnitude larger than that of DeepEye and Data2Vis.
The size of our corpus permits the use of 1) large feature sets
that capture many aspects of a dataset and 2) high-capacity
models such as deep neural networks.
The third major difference is one of data quality. In con-

trast to the few datasets used to train the three existing sys-
tems, the datasets used to train VizML models are extremely
diverse in shape, structure, and distribution. Furthermore, the
visualizations used by otherML-based recommender systems
are generated by rule-based systems and evaluated under
controlled settings. The corpus used by VizML is the result
of real visual analysis by analysts on their own datasets.

However, VizML faces two major limitations. First, these
three ML-based systems recommend both data queries and
visual encodings, while VizML only recommends the latter.
Second, in this paper, we do not create an application that
employs our visualization model. Design considerations for
user-facing systems that productively and properly employ
ML-based visualization recommendation are important, but
beyond the scope of this paper.

4 DATA
We describe our process for extracting features and design
choices from the processed Plotly data. These are steps 1,
2 and 3 in Figure 1. In the SM Section S3, we describe our
process for collecting and cleaning the corpus of 2.3 million
dataset-visualization pairs from the Plotly Community Feed
[44, 46] and provide a description of the data. This paper is
the first time the Plotly corpus, generated by 143,007 unique
users, is used to train visualization recommender systems.
The corpus along with analysis scripts is publicly available
at https://vizml.media.mit.edu.

Feature Extraction
We map each dataset to 841 features, mapped from 81 single-
column features and 30 pairwise-column features using 16
aggregation functions. Detail on each of the features is found
in Table S2 in the SM Section S4.
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Figure 3: Extracting design choices from a dual-axis scatter-
plot visualizing three columns of the MPG dataset.

Each column is described by 81 single-column features
across four categories. The Dimensions (D) feature is the
number of rows in a column. Types (T) features capture
whether a column is categorical, temporal, or quantitative.
Values (V) features describe the statistical and structural
properties of the valueswithin a column.Names (N) features
describe the column name. We distinguish between these
feature categories for three reasons. First, these categories
let us organize how we create and interpret features. Second,
we can observe the contribution of different types of features.
Third, some categories of features may be less generalizable
than others. We order these categories (D → T → V → N)
by how biased we expect those features to be towards the
Plotly corpus.

We describe each pair of columnswith 30 pairwise-column
features. These features fall into two categories:Values and
Names. Note that many pairwise-column features depend
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on the individual column types determined through single-
column feature extraction. For instance, the Pearson corre-
lation coefficient requires two numeric columns, and the
“number of shared values” feature requires two categorical
columns.
We create 841 dataset-level features by aggregating

these single- and pairwise-column features using the 16 ag-
gregation functions shown in Table S2c in SM Section S4.
These aggregation functions convert single-column features
(across all columns) and pairwise-column features (across
all pairs of columns) into scalar values. For example, given a
dataset, we can count the number of columns, describe the
percent of columns that are categorical, and compute the
mean correlation between all pairs of quantitative columns.
Two other approaches to incorporating single-column fea-
tures are to train separate models per number of columns, or
to include column features with padding. Neither approach
yielded a significant improvement over the results reported
in Section 6.

Design Choice Extraction
Each visualization in Plotly consists of traces that associate
collections of data with visual elements. Therefore, we ex-
tract an analyst’s design choices by parsing these traces.
Examples of encoding-level design choices include mark
type, such as scatter, line, bar; and X or Y column encoding,
which specifies which column is represented on which axis;
and whether or not an X or Y column is the single column
represented along that axis. For example, the visualization
in Figure 3 consists of two scatter traces, both of which have
the same column encoded on the X axis (Hp), and two distinct
columns encoded on the Y axis (MPG and Wgt).
By aggregating these encoding-level design choices, we

can characterize visualization-level design choices of a
chart. Within our corpus, over 90% of the visualizations con-
sist of homogeneous mark types. Therefore, we use visual-
ization type to describe the type shared among all traces, and
also determined whether the visualization has a shared axis.
The example in Figure 3 has a scatter visualization type and
a single shared axis (X).

5 METHODS
We describe our feature processing pipeline, the machine
learning models we use, how we train those models, and
how we evaluate performance. These are steps 4 and 5 of
the workflow in Figure 1.

Feature Processing
We converted raw features into a form suitable for modeling
using a five-stage pipeline. First, we apply one-hot encod-
ing to categorical features. Second, we set numeric values
above the 99th percentile or below the 1st percentile to those

respective cut-offs. Third, we imputed missing categorical
values using the mode of non-missing values, and missing
numeric values with the mean of non-missing values. Fourth,
we removed the mean of numeric fields and scaled to unit
variance.

Lastly, we randomly removed datasets that were exact
deduplicates of each other, resulting in unique 1, 066, 443
datasets and 2, 884, 437 columns. However, many datasets
are slight modifications of each other, uploaded by the same
user. Therefore, we removed all but one randomly selected
dataset per user, which also removed bias towards more
prolific Plotly users. This aggressive deduplication resulted
in a final corpus of 119,815 datasets and 287,416 columns.
Results from only exact deduplication result in significantly
higher within-corpus test accuracies, while a soft threshold-
based deduplication results in similar test accuracies.

Prediction Tasks
Our task is to train models that use the features described
in Section 4 to predict the design choices also described in
Section 4. Two visualization-level prediction tasks use
dataset-level features to predict visualization-level design
choices:

(1) Visualization Type [VT]: 2-, 3-, and 6-class
Given all traces are the same type, what type is it?
Scatter Line Bar Box Histogram Pie
44829 26209 16002 4981 4091 3144

(2) Has Shared Axis [HSA]: 2-class
Do the traces all share one axis (either X or Y)?
False True
95723 24092

The three encoding-level prediction tasks use features
about individual columns to predict how they are visually
encoded. These prediction tasks consider each column inde-
pendently, instead of alongside other columns in the same
dataset, which accounts for the effect of column order.

(1) Mark Type [MT]: 2-, 3-, and 6-class
What mark type is used to represent this column?
Scatter Line Bar Box Histo Heatmap
68931 64726 30023 13125 5163 1032

(2) Is Shared X-axis or Y-axis [ISA]: 2-class
Is this column the only column encoded on its axis?
False True
275886 11530

(3) Is on X-axis or Y-axis [XY]: 2-class
Is this column encoded on the X-axis or the Y-axis?
False True
144364 142814



For the Visualization Type and Mark Type tasks, the 2-
class task predicts line vs. bar, and the 3-class predicts scatter
vs. line vs. bar. Though Plotly supports over twenty mark
types, we limited prediction outcomes to the few types that
comprise the majority of visualizations within our corpus.
This heterogeneity of visualization types is consistent with
the findings of [4, 38].

Neural Network and Baseline Models
Our primary model is a fully-connected feedforward neural
network (NN) with 3 hidden layers, each consisting of 1, 000
neurons with ReLU activation functions and implemented
using PyTorch [41]. For comparison, we chose four simpler
baseline models, all implemented using scikit-learn [42] with
default parameters: naive Bayes (NB), K-nearest neighbors
(KNN), logistic regression (LR) and random forest (RF). Ran-
domized parameter search for each model did not result in a
significant performance increase over the reported results.
For all models, we split the data into 60/20/20

train/validation/test sets and train and test each model five
times using 5-fold cross-validation. The reported results are
thus test results averaged across the five test sets. We over-
sample the train, validation, and test sets to the size of the
majority class while ensuring no overlap between the three
sets. We oversample because of the heterogeneous outcomes,
naive classifiers guessing the base rates would have high
accuracies. Balanced classes also allow us to report standard
accuracies (fraction of correct predictions), ideal for inter-
pretability and generalizing results to multi-class casesC > 2,
in contrast to measures such as the F1 score.

The neural network was trained with the Adam optimizer
and a mini-batch size of 200. The learning rate was initial-
ized at 5 × 10−4, and followed a learning rate schedule that
reduces the learning rate by a factor of 10 upon encountering
a plateau, defined as 10 epochs during which validation accu-
racy does not increase beyond a threshold of 10−3. Training
ended after the third decrease in the learning rate, or at 100
epochs. Weight decay, dropout and batch normalization did
not significantly improve performances.

In terms of features, we constructed four different feature
sets by incrementally adding the Dimensions (D), Types
(T), Values (V), and Names (N) categories of features, in
that order. We refer to these feature sets as D, D+T, D+T+V,
and D+T+V+N=All. The neural network was trained and
tested using all four feature sets independently. The four base-
line models only used the full feature set (D+T+V+N=All).

6 EVALUATING PERFORMANCE
We report performance of each model on the five prediction
tasks in the barplot in Figure ?? and in Table 2 in the SM.
The neural network consistently outperforms the baseline
models and model performance generally progressed as NB

< KNN < LR ≈ RF < NN. That said, the performance of both
RF and LR is not significantly lower than that of the NN in
some cases. Simpler classifiers may be desirable, depending
on the need for optimized accuracy, and the trade-off with
other factors such as interpretability and training cost.

Because the four feature sets are a sequence of supersets (D
⊂ D+T ⊂ D+T+V ⊂ D+T+V+N), we consider the accuracy of
each feature set above and beyond the previous. For instance,
the increase in accuracy of a model trained on D+T+V over
a model trained on D+T is a measure of the contribution
of value-based (V) features. These marginal accuracies are
visualized alongside baseline model accuracies in Figure ??
in the SM.

We note that the value-based feature set (e.g. the statistical
properties of a column) contribute more to performance
than the type-based feature set (e.g. whether a column is
categorical), potentially because there are many more value-
based features than type-based features. Or, because many
value-based features are dependent on column type, there
may be overlapping information between value- and type-
based features.

Interpreting Feature Importances
Feature importances help relate our results to prior literature
and inform design guidelines for rule-based systems. Here,
we determine feature importances for our top performing
random forest models using the standard mean decrease
impurity (MDI) measure [8, 32]. We choose this method for
its interpretability and its stability across runs. The top ten
features for five different tasks are shown in Table 2a and
for all other tasks in the SM Table S3.

We first note the importance of dimensionality ( ), like
the length of columns (i.e. the number of rows) or the number
of columns. For example, the length of a column is the second
most important feature for predicting whether that column is
visualized as a line or bar trace. The dependence of mark type
on number of visual elements is consistent with heuristics
like “keep the total number of bars under 12” for showing
individual differences in a bar chart [61], and not creating pie
charts with more “more than five to seven” slices [30]. The
dependence on number of columns is related to the heuristics
described by Bertin [5] and encoded in Show Me [34].
Features related to column type ( ) are consistently

important for each prediction task. For example, whether
a dataset contains a string type column is the fifth most
important feature for determining two-class visualization
type. The dependence of visualization type choice on col-
umn data type is consistent with the type-dependency of
the perceptual properties of visual encodings described by
Mackinlay [35] and Cleveland and McGill [15].



(a) Prediction accuracies for two visualization-level tasks.

Visualization Type HSA

Model Features d C=2 C=3 C=6 C=2

NN D 15 66.3 50.4 51.3 84.1
D+T 52 75.7 59.6 60.8 86.7
D+T+V 717 84.5 77.2 87.7 95.4
All 841 86.0 79.4 89.4 97.3

NB All 841 63.4 49.5 46.2 72.9
KNN All 841 76.5 59.9 53.8 81.5
LR All 841 81.8 64.9 69.0 90.2
RF All 841 81.2 65.1 66.6 90.4

Nraw (in 1000s) 42.2 87.0 99.3 119

(b) Prediction accuracies for three encoding-level tasks.

Mark Type ISA XY

Model Features d C=2 C=3 C=6 C=2 C=2

NN D 1 65.2 44.3 30.5 52.1 49.9
D+T 9 68.5 46.8 35.0 70.3 57.3
D+T+V 66 79.4 59.4 76.0 95.5 67.4
All 81 84.9 67.8 82.9 98.3 83.1

NB All 81 57.6 41.1 27.4 81.2 70.0
KNN All 81 72.4 51.9 37.8 72.0 65.6
LR All 81 73.6 52.6 43.7 84.8 79.1
RF All 81 78.3 60.1 46.7 74.2 83.4

Nraw (in 1000s) 94.7 163 183 287 287
Table 1: Design choice prediction accuracies for five models, averaged over 5-fold cross-validation. The standard error of the
mean was < 0.1% for all results. Results are reported for the neural network (NN) and four baseline models: naive Bayes
(NB), K-nearest neighbors (KNN), logistic regression (LR), and random forest (RF). Features are separated into four categories:
dimensions (D), types (T), values (V), and names (N). Nraw is the size of the training set before resampling, d is the number of
features, and C is the number of outcome classes. HSA = Has Shared Axis, ISA = Is Shared X-axis or Y-Axis, and XY = Is on
X-axis or Y-axis.

(a) Feature importances for two visualization-level tasks.

# Visualization Type (C=2) Has Shared Axis (C=2)

1 % Values are Mode std Number of Cols
2 Min Value Length max Is Monotonic %
3 Entropy var Field Name Length AAD
4 Entropy std # Words In Name NR
5 String Type has X In Name #
6 Median Length max # Words In Name range
7 Mean Value Length AAD Edit Distance mean
8 Entropy mean Edit Distance max
9 Entropy max Length std
10 Min Value Length AAD Edit Distance NR

(b) Feature importances for three encoding-level tasks.

# Mark Type (C=2) Is Shared Axis (C=2) Is X or Y Axis (C=2)

1 Entropy # Words In Name Y In Name
2 Length Unique Percent X In Name
3 Sortedness Field Name Length Field Name Length
4 % Outliers (1.5IQR) Is Sorted Sortedness
5 Field Name Length Sortedness Length
6 Lin Space Seq Coeff X In Name Entropy
7 % Outliers (3IQR) Y In Name Lin Space Seq Coeff
8 Norm. Mean Lin Space Seq Coeff Kurtosis
9 Skewness Min # Uppercase Chars
10 Norm. Range Length Skewness

Table 2: Top-10 feature importances determined bymean decrease impurity for the top performing random forestmodels. The
second column in the visualization-level importances table describes how each featurewas aggregated, using the abbreviations
in Table S2c. Colors represent different feature groupings: dimensions ( ), type ( ), statistical [Q] ( ), statistical [C] ( ),
sequence ( ), scale of variation ( ), outlier ( ), unique ( ), name ( ), and pairwise-relationship ( ).

Statistical features (quantitative: , categorical: )
such as Gini, entropy, skewness and kurtosis are impor-
tant across the board. The presence of these higher order
moments is striking because lower-order moments such as
mean and variance are low in importance. The importance of
these moments highlight the potential importance of captur-
ing high-level characteristics of distributional shape. These
observations support the use of statistical properties in visu-
alization recommendation, like in [59, 70], but also the use
of higher-order properties such as skewness, kurtosis, and
entropy in systems such as Foresight [16], VizDeck [43], and
Draco [37].

Measures of orderedness ( ), specifically sortedness
and monotonicity, are important for many tasks. Sortedness

is defined as the element-wise correlation between the sorted
and unsorted values of a column, that is |corr(Xraw ,Xsor ted )|,
which lies in the range [0, 1]. Monotonicity is determined
by strictly increasing or decreasing values in Xraw . The im-
portance of these features could be due to pre-sorting of a
dataset by an analyst, which may reveal which column is con-
sidered to be the independent or explanatory column, which
is typically visualized along the X-axis. While intuitive, we
have not seen orderedness factor into existing systems.
We also note the importance of the linear or logarith-

mic space sequence coefficients, which are heuristic-based
features that roughly capture the scale of variation ( ).
Specifically, the linear space sequence coefficient is deter-
mined by std(Y )/mean(Y ), where Y = {Xi − Xi−1} with



i = (1 + 1)..N for the linear space sequence coefficient, and
Y = {Xi/Xi−1} with i = (1 + 1)..N for the logarithmic space
sequence coefficient. A column “is” linear or logarithmic if
its coefficient ≤ 10−3. Both coefficients are important in all
four selected encoding-level prediction tasks. We have not
seen similar measures of scale used in prior systems.
In sum, the diversity of the features in Table 2a and Ta-

ble S3 in the SM suggest that rule-based recommender sys-
tems should include more features than the current type
based features most systems rely on (e.g. [34, 73]). Further-
more, the task-specific ranking of features, as well as the
non-linear dependencies in the models, make it even harder
for rule-based systems to perform well across tasks and do-
mains and thus further emphasize the need for ML-based
recommender systems

7 BENCHMARKINGWITH CROWDSOURCED
EFFECTIVENESS

We expand our definition of effectiveness from a binary to a
continuous function that can be determined through crowd-
sourced consensus. Then, we describe our experimental pro-
cedure for gathering visualization type evaluations from
Mechanical Turk workers. We compare different models at
predicting these evaluations using a consensus-based effec-
tiveness score.

Modeling and Measuring Effectiveness
As discussed in Section 2, we model data visualization as
a process of making a set of design choices C = {c} that
maximize an effectiveness criteria Eff that depends on dataset
d , task, and context. In Section 6, we predict these design
choices by training a machine learning model on a corpus of
dataset-design choice pairs [(d, cd )]. But because each dataset
was visualized only once by each user, we consider the user
choices cd to be effective, and each other choice as ineffective.
That is, we consider effectiveness to be binary.

But prior research suggests that effectiveness is contin-
uous. For example, Saket et al. use time and accuracy pref-
erence to measure task performance [53], Borkin et al. use
a normalized memorability score [6], and Cleveland and
McGill use absolute error rates to measure performance on
elementary perceptual tasks [15]. Discussions by visualiza-
tion experts [25, 29] also suggest that multiple visualizations
can be equally effective at displaying the same data.

Our effectiveness metric should be continuous and reflect
the ambiguous nature of data visualization, which leads to
multiple choices receiving a non-zero or even maximal score
for the same dataset. This is in agreement with measures of
performance for other machine learning tasks such as the
BLEU score in language translation [40] and the ROUGE
metric in text summarization [11], where multiple results
can be (partly) correct.

To estimate this effectiveness function, we need to observe
a dataset d visualized by multiple potential users. Assume
that a design choice c can take on multiple discrete values
{v}. For instance, we consider c the choice of Visualization
Type, which can take on the values {bar, line, scatter}. Using
nv to denote the number of timesv was chosen, we compute
the probability of making choice v as P̂c (v) = nv/N , and
use {P̂c } to denote the collection of probabilities across all v .
We normalize the probability of choice v by the maximum
probability to define an effectiveness score ˆEffc (v) = P̂c (v) /

max ({P̂c }). Now, if all N users make the same choicev , only
c = v will get themaximimum score while every other choice
c , v will receive a zero score. However, if two choices are
chosen with an equal probability and are thus both equally
effective, the normalization will ensure that both receive a
maximum score.
Developing this crowdsourced score that reflects the am-

biguous nature of making data visualization choices serves
three main purposes. First, it lets us establish uncertainty
around our models – in this case, by bootstrap. Second, it
lets us test whether models trained on the Plotly corpus can
generalize and if Plotly users are actually making optimal
choices. Lastly, it lets us benchmark against performance of
the Plotly users as well as other predictors.
To generate the crowdsourced evaluation data, we re-

cruited and successfully pre-screened 300 participants through
Amazon Mechanical Turk. The data preparation and crowd-
sourced evaluation procedures is described in more detail in
SM Section S6.

Benchmarking Procedure
We use four types of predictors in our benchmark: human,
rule-based model, ML-based model, and baseline. The two
human predictors are the Plotly predictor, which is the visu-
alization type of the original plot created by the Plotly user,
and the MTurk predictor is the choice of a single random
Mechanical Turk participant. When evaluating the perfor-
mance of individual Mechanical Turkers, that individual’s
vote was excluded from the set of votes used in the mode
estimation.
The two rule-based predictors include one commercial

system and another research system. The first, Tableau’s
ShowMe feature [34], is based on the expressiveness and ef-
fectiveness criteria of Mackinlay’s APT [35]. The second, the
CompassQL recommender engine [71], powers the Voyager
and Voyager 2 systems [72, 73].

The two learning-based predictors areDeepEye andData2Vis.
In all cases, we tried to make choices that maximize predic-
tion performance, within reason. We uploaded datasets to
Show Me, DeepEye, and CompassQL as comma-separated
values (CSV) files, and to Data2Vis as JSON objects. Unlike



VizML and Data2Vis, DeepEye supports pie, bar, and scatter
visualization types. We marked both pie and bar recommen-
dations were both bar predictions, and scatter recommenda-
tions as line predictions in the two-type case.

For all tools, we modified the data within reason to maxi-
mize the number of valid results. For the remaining errors (4
for Data2Vis, 14 for DeepEye), and cases without returned
results (12 for DeepEye and 33 for CompassQL) we assigned
a random chart prediction.
Predictor performance is evaluated as the total sum of

normalized effectiveness scores. This Consensus-Adjusted
Recommendation Score (CARS) of a predictor is defined as:

CARSpredictor =
1
|D |

∑
d ∈D

P̂c
(
ĉpredictor, d

)
max ({P̂c })

× 100 (1)

where |D | is the number of datasets (66 for two-class and
99 for three-class), ĉpredictor, d is the predicted visualization
type for dataset d , and P̂c returns the fraction of Mechanical
Turker votes for a given visualization type. Note that the
minimum CARS > 0%. We establish 95% confidence intervals
around these scores by comparing against 105 bootstrap
samples of the votes, which can be thought of as synthetic
votes drawn from the observed probability distribution.

Benchmarking Results
We first measure the degree of consensus using the Gini
coefficient, the distribution of which is shown in Figure 4. If
a strong consensus was reached for all visualizations, then
the Gini distributions would be strongly skewed towards the
maximum, which is 1/2 for the two-class case, and 2/3 for the
three-class case. Conversely, a lower Gini implies a weaker
consensus, indicating an ambiguous ideal visualization type.
TheGini distributions are not skewed towards either extreme,
which supports the use of a soft scoring metric such as CARS
over a hard measure like accuracy.

The Consensus-Adjusted Recommendation Scores for each
model and task are visualized as a bar chart in Figure 5.
We first compare the CARS of VizML (88.96 ± 1.66) against
that of Mechanical Turkers (86.66 ± 5.38) and Plotly users
(90.35± 1.85) for the two-class case, as shown in Figure 5a. It
is surprising that VizML performs comparably to the original
Plotly users, who possess domain knowledge and invested
time into visualizing their own data. VizML significantly
out-performs Data2Vis (75.61 ± 2.44) and DeepEye (79.12 ±
4.33). Show Me achieves a CARS of (81.70 ± 2.05), which is
similar to that of CompassQL (80.98 ± 4.32). While the other
recommenders were not trained to perform visualization
type prediction, all perform slightly better than the random
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Figure 4: Distribution of Gini coefficients

classifier (74.30 ± 7.09). For this task, the absolute minimum
score was (48.61 ± 2.95).
The same results hold for the three-class case shown in

Figure 5b, in which the CARS of VizML (81.18 ± 2.39) is
slightly higher, but within error bars, than that of Mechanical
Turkers (79.28±4.66), and Plotly users (79.58±2.44). Data2Vis
(64.75 ± 3.13) and DeepEye (68.09 ± 4.11) outperform the
Random (60.37 ± 6.98) with a larger margin, but still within
error. CompassQL (68.95 ± 4.48) slightly surpasses Show Me
(65.37 ± 2.98), also within error. The minimum score was
(26.93 ± 3.46).

8 DISCUSSION
In this paper, we introduce VizML, a machine learning ap-
proach to visualization recommendation using a large corpus
of datasets and corresponding visualizations.We identify five
key prediction tasks and show that neural network classifiers
attain high test accuracies on these tasks, relative to both
random guessing and simpler classifiers. We also benchmark
with a test set established through crowdsourced consen-
sus, and show that the performance of neural networks is
comparable that of individual humans.
Visualization system developers have multiple paths to-

wards incorporatingML-based recommenders such as VizML
into authoringworkflows. Partial specification recommenders
on top of existing manual specification tools, such as the
Show Me [34] feature in Tableau [62], rely on design choice
suggestions that could be provided by a learned model. Code-
based authoring environments such as the Draco [37] and
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Figure 5: Consensus-Adjusted Recommendation Score of
three ML-based, two rule-based, and two human predictors
when predicting consensus visualization type. Error bars
show 95% bootstrapped confidence intervals, with 105 boot-
straps. The mean minimum achievable score is the lower
dashed line, while the highest achieved CARS is the upper
dotted line.

Vega-Lite [55] editors, could use partial specification rec-
ommenders to power visualization “autocomplete” features,
which suggest design choices in response to user interaction,
in real time. Mixed-initiative systems such as Voyager [73]
and DIVE [23] could leverage Top-N recommendations to
present a gallery of visualizations for users to search and
drill-down. Designing interactions with ML-based recom-
menders is an important area of future work.

In order to develop ML-based recommenders for their own
systems, developers could begin by identifying user design
choices and extracting simple features from data. Given suffi-
cient volume, those features and design choices can be used
to train models as we have demonstrated in this paper. Al-
ternatively, developers can overcome the cold-start problem
by using pre-trained models such as VizML. With models
in hand, developers can progress further by collecting the
usage analytics (e.g. measures of engagement such as clicks
and shares) to establish customized measures of visualization
effectiveness.

We acknowledge the limitations of the Plotly corpus and
our approach. First, despite aggressive deduplication, our
model is certainly biased towards the Plotly dataset. As a
web-based platform, Plotly could draw a certain cohort of
analysts, encourage certain types of plots by interface design
or defaults, or be more appropriate for specific types and
sizes of data. Second, neither the Plotly user nor the Mechan-
ical Turker is an expert in data visualization. Thirdly, we
acknowledge that this paper was only focused on a subset
of the tasks usually considered in a visualization recommen-
dation pipeline.
Promising avenues for future work lie in both data col-

lection and modelling directions. On the data side, there is
a need for more diverse training data from other tools (e.g.
Many Eyes and Tableau) and pertaining to adjacent data sci-
ence tasks such as feature selection and data transformation.
Richer training data allows researchers to investigate the pre-
vious bias concerns, optimize visualization recommenders
with a task-based (or generally multi-objective) effectiveness
metric, recommend multiple views of a dataset, study com-
plementary approaches to feature engineering, and integrate
distinct design choice recommendations using a probabilistic
graphical model.

Underlying each ML-based recommender model is a mea-
sure of visualization effectiveness. Determining the param-
eters that inform effectiveness is an open question for the
visualization community. Machine learning tasks such as
image annotation or medical diagnosis are often objective,
in that there exists a clear human-annotated ground truth.
Other tasks are subjective, such as language translation or
text summarization tasks, and are benchmarked against hu-
man evaluation or against human-generated results.

Questions of objective visualization quality point towards
the role of experts in visualization assessment. Visualization
experts provide evaluations that are informed by experience
and knowledge of perceptual studies. But if laypeople are the
target audience of visualizations, the consensus opinion of
crowdsourced agents may be a good measure of visualization
quality. By providing a large training corpus, initial machine
learning models, and a crowdsourced benchmark, VizML is
a step forward in addressing these questions.
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S1 DETAILED PROBLEM FORMULATION
We formulate basic visualization of a datasetd as a set of inter-
related design choicesC = {c}, each of which is selected from
a possibility space c ∼ C. However, not all design choices
result in valid visualizations – some choices are incompatible
with each other. For instance, encoding a categorical column
with the Y position of a line mark is invalid. Therefore, the
set of choices that result in valid visualizations is a subset of
the space of all possible choices C1 × C2 × . . . × C |C | .

Design Choice Possibility Space Set of Real Design Choices

Valid Design

Choices

Invalid Design

Choices

Visual
Exploration

Visualization

Effectiveness
Dataset

Context
Aesthetics, Task, 
Medium, Domain,

Audience

Figure S1: Creating visualizations is a process of making de-
sign choices, which can be recommended by a system or
specified by an analyst.

The effectiveness of a visualization can be defined by infor-
mational measures such as efficiency, accuracy, and memora-
bility [6, 74], or emotive measures like engagement [19, 27].
Prior research also shows that effectiveness is informed by
low-level perceptual principles [15, 22, 31, 51] and dataset
properties [28, 54], in addition to contextual factors such as
task [3, 28, 53], aesthetics [14], domain [24], audience [60],
and medium [36, 57]. In other words, an analyst makes de-
sign choices Cmax that maximize visualization effectiveness
Eff given a dataset d and contextual factors T :

Cmax = argmax
C

Eff (C | d,T ) (1)

But making design choices can be expensive. A goal of vi-
sualization recommendation is to reduce the cost of creating
visualizations by automatically suggesting a subset of design
choices Cr ec ⊆ C .

Modeling Design Choice Recommendation
Consider a single design choice c ∈ C . Let C ′ = C \ {c}
denote the set of all other design choices excluding c . Given

C ′, a dataset d , and contextT , there is an ideal design choice
recommendation function Fc that outputs the design choice
cmax ∈ Cmax from Eqn. 1 that maximizes visualization effec-
tiveness:

Fc (d | C ′,T ) = cmax (2)
Our goal is to approximate Fc with a function Gc ≈ Fc .

Assume now a corpus of datasets D = {d} and correspond-
ing visualizations V = {Vd }, each of which can be described
by design choices Cd = {cd }. Machine learning-based rec-
ommender systems consider Gc as a model with a set of
parameters Θc that can be trained on this corpus by a learn-
ing algorithm that maximizes an objective function Obj:

Θf it = argmax
Θc

∑
d ∈D

Obj (cd ,Gc (d | Θc ,C
′,T )) (3)

Without loss of generality, say the objective function max-
imizes the likelihood of observing the training output {Cd }.
Even if an analyst makes sub-optimal design choices, collec-
tively optimizing the likelihood of all observed design choices
can still be optimal [39]. This is precisely the case with our
observed design choices cd = Fc (d | C ′,T ) + noise + bias.
Therefore, given an unseen dataset d∗, maximizing this ob-
jective function can plausibly lead to a recommendation that
maximizes effectiveness of a visualization.

Gc
(
d∗ | Θf it ,C

′,T
)
≈ Fc (d

∗ | C ′, ) = cmax (4)
In this paper, our model Gc is a neural network and Θc

are connection weights. We simplify the recommendation
problem by optimizing each Gc independently, and without
contextual factors:Gc (d | Θ) = Gc (d | Θ,C ′,T ). We note that
independent recommendations may not be compatible, nor
do they necessarily maximize overall effectiveness. Gener-
ating a complete visualization output will require modeling
dependencies between Gc for each c .

S2 COMPARISONWITH ML-BASED
VISUALIZATION RECOMMENDER SYSTEMS

A tabular comparison of the ML-based visualization rec-
ommendation systems VizML (this work), DeepEye [33],
Data2Vis [17] and Draco-Learn [37] is shown in Table S1.

S3 PLOTLY DATA DESCRIPTION AND ANALYSIS
Collection and Cleaning
Plotly [44] is a software company that creates tools and
software libraries for data visualization and analysis. For ex-
ample, Plotly Chart Studio [45] is a web application that lets
users upload datasets and manually create interactive D3.js
and WebGL visualizations of over 20 visualization types.



System Source Ndata Generation Learning Task Training Data Features Model

VizML Public
(Plotly) 106 Human Design Choice

Recommendation
Dataset-
Visualization Pairs

Single + Pairwise +
Aggregated Neural Network

DeepEye Crowd 1) 33.4K
2) 285K

Rules →
Annotation

1) Good-Bad Classif.
2) Ranking

1) Good-Bad Labels
2) Pairwise Comparisons Column Pair 1) Decision Tree

2) RankNet

Data2Vis Tool
(Voyager) 4,300 Rules →

Validation
End-to-End
Viz. Generation

Dataset Subset-
Visualization Pairs Raw Seq2Seq NN

Draco-Learn Crowd 1,100 +
10

Rules →
Annotation

Soft Constraint
Weights Pairwise Comparisons Soft Constraint

Violation Counts RankSVM

Table S1: Comparison of machine learning-based visualization recommendation systems. The major differences are that of
Learning Task definition, and the quantity (Ndata) and quality (Generation and Training Data) of training data.

Users familiar with Python can use the Plotly Python li-
brary [47] to create those same visualizations with code.
Visualizations in Plotly are specified with a declarative

schema. In this schema, each visualization is specified with
two data structures. The first is a list of traces that specify
how a collection of data is visualized. The second is a dictio-
nary that specifies aesthetic aspects of a visualization untied
from the data, such as axis labels and annotations. For exam-
ple, the scatterplot from Section 2 is specified with a single
“scatter” trace with Hp as the x parameter and MPG as the y
parameter:

Plotly Chart Builder Plotly Schema

Plotly Python Library
......

Traces

Layout

The Plotly schema is similar to that of MATLAB and of
the matplotlib Python library. The popular Vega [56] and
Vega-lite [55] schemas are more opinionated, which “allows
for complicated chart display with a concise JSON descrip-
tion, but leaves less control to the user" [49]. Despite these
differences, it is straightforward to convert Plotly schemas
into other schemas, and vice versa.
Plotly also supports sharing and collaboration. Starting

in 2015, users could publish charts to the Plotly Commu-
nity Feed [46], which provides an interface for searching,
sorting, and filtering millions of visualizations, as shown in
Figure S2. The underlying /plots endpoint from the Plotly
REST API [48] associates each visualization with three ob-
jects: data contains the source data, specification con-
tains the traces, and layout defines display configuration.

Data Description
Using the Plotly API, we collected approximately 2.5 years of
public visualizations from the feed, starting from 2015-07-17
and ending at 2018-01-06. We gathered 2,359,175 visualiza-
tions in total, 2,102,121 of which contained all three configu-
ration objects, and 1,989,068 of which were parsed without
error. To avoid confusion between user-uploaded datasets
and our dataset of datasets, we refer to this collection of
dataset-visualization pairs as the Plotly corpus.

The Plotly corpus contains visualizations created by 143, 007
unique users, who vary widely in their usage. The distribu-
tion of visualizations per user is shown in Figure S3. Ex-
cluding the top 0.1% of users with the most visualizations,
many of whom are bots that programmatically generate vi-
sualizations, users created a mean of 6.86 and a median of 2
visualizations each.

Datasets also vary widely in number of columns and rows.
Though some datasets contain upwards of 100 columns,
94.97% contain less than or equal to 25 columns. Exclud-
ing datasets with more than 25 columns, the average dataset

Figure S2: Screenshot of the Plotly Community Feed [46].



has 4.75 columns, and the median dataset has 3 columns.
The distribution of columns per visualization is shown in
Figure S4a. The distribution of rows per dataset is shown in

Figure S3: Distribution of plots per user, visualized on a log-
linear scale.

(a) Distribution of columns per dataset, after removing the
5.03% of datasets with more than 25 columns, visualized on
a log-linear scale.

(b) Distribution of rows per dataset, visualized on a log-log
scale.

Figure S4: Distribution of dataset dimensions in the Plotly
corpus.

Figure S4b, and has a mean of 3105.97, median of 30, and
maximum of 10 × 106. These heavy-tailed distributions are
consistent with those of IBM ManyEyes and Tableau Public
as reported by [38].
Though Plotly lets users generate visualizations using

multiple datasets, 98.32% of visualizations used only one
source dataset. Therefore, we are only concerned with vi-
sualizations using a single dataset. Furthermore, over 90%
of visualizations used all columns in the source dataset, so
we are not able to address data query selection. Lastly, out
of 13, 321, 598 traces, only 0.16% of have transformations or
aggregations. Given this extreme class imbalance, we are
not able to address column transformation or aggregation
as learning tasks.

S4 FEATURES AND AGGREGATIONS
Details on the 81 single-column features, 30 pairwise-column
features and 16 aggregation functions can be found in Ta-
ble S2. Single-column features in Table S2a fall into four
categories: Dimensions (D) (number of rows in a column),
Types (T) (categorical, temporal, or quantitative), Values
(V) (the statistical and structural properties) and Names
(N) (related to column name). Pairwise-column features in
Table S2b fall into two categories” Values and Names. Fi-
nally, 841 dataset-level features are created by aggregating
these features using the 16 aggregation functions shown
in Table S2c.

S5 PERFORMANCE EVALUATION
A stacked bar chart describing baseline model prediction
performance and the marginal contribution by feature set
for the neural network is shown in Figure ??

S6 CROWDSOURCED EVALUATION PROCEDURE
For the crowdsourced evaluation, we recruited participants
through Amazon Mechanical Turk. To participate in the ex-
periment, workers had to hold a U.S. bachelor degree and be
at least 18 years of age, and be completing the survey on a
phone. Workers also had to successfully answer three pre-
screen questions: 1) Have you ever seen a data visualization?
[Yes or No], 2) Does the x-axis of a two-dimensional plot run
horizontally or vertically? [Horizontally, Vertically, Both,
Neither], 3) Which of the following visualizations is a bar
chart? [Picture of Bar Chart, Picture of Line Chart, Picture
of Scatter]. 150 workers successfully completed the two-class
experiment, while 150 separate workers completed the three-
class experiment.
After successfully completing the pre-screen, workers

evaluated the visualization type of 30 randomly selected
datasets from our test set. Each evaluation had two stages.
First, the user was presented the first 10 rows of the dataset,
and told to "Please take a moment to examine the following



(a) 81 single-column features describing the dimensions,
types, values, and names of individual columns.

Dimensions (1)
Length (1) Number of values

Types (8)
General (3) Categorical (C), quantitative (Q), temporal (T)
Specific (5) String, boolean, integer, decimal, datetime

Values (58)
Statistical [Q, T]
(16)

Mean, median, range × (Raw/normalized by max),
variance, standard deviation, coefficient of variance,
minimum, maximum, (25th/75th) percentile,
median absolute deviation, average absolute
deviation, quantitative coefficient of dispersion

Distribution [Q]
(14)

Entropy, Gini, skewness, kurtosis, moments
(5-10), normality (statistic, p-value),
is normal at (p < 0.05, p < 0.01).

Outliers (8) (Has/%) outliers at (1.5 × IQR, 3 × IQR, 99%ile, 3σ )
Statistical [C] (7) Entropy, (mean/median) value length, (min, std,

max) length of values, % of mode
Sequence (7) Is sorted, is monotonic, sortedness, (linear/log)

space sequence coefficient, is (linear/space) space
Unique (3) (Is/#/%) unique
Missing (3) (Has/#/%) missing values

Names (14)
Properties (4) Name length, # words, # uppercase characters,

starts with uppercase letter
Value (10) (“x", “y", “id", “time", digit, whitespace, “$",

“€", “£", “Y") in name

(b) 30 pairwise-column features describing the relationship
between values and names of pairs of columns.

Values (25)
[Q-Q] (8) Correlation (value, p, p < 0.05),

Kolmogorov-Smirnov (value, p, p < 0.05),
(has, %) overlapping range

[C-C] (6) χ2 (value, p, p < 0.05),
nestedness (value, = 1, > 0.95%)

[C-Q] (3) One-Way ANOVA (value, p, p < 0.05)
Shared values (8) is identical, (has/#/%) shared values, unique values

are identical, (has/#/%) shared unique values
Names (5)

Character (2) Edit distance (raw/normalized)
Word (3) (Has, #, %) shared words

(c) 16 Aggregation functions used to aggregate single- and
pairwise-column features into 841 dataset-level features.

Categorical (5) Number (#), percent (%), has, only one (#=1), all
Quantitative (10) Mean, variance, standard deviation, coefficient

of variance (CV), min, max, range, normalized
range (NR), average absolute deviation (AAD)
median absolute deviation (MAD)

Special (1) Entropy of data types
Table S2: Features and aggregation functions.

dataset. (Showing first 10 out of X rows)." Then, after five sec-
onds, the "next" button appeared. At the next stage, the user
was asked "Which visualization best represents this dataset?
(Showing first 10 out of X rows)." On this stage, the user was
shown both the dataset and the corresponding bar, line, and
scatter charts representing that dataset. A user could submit
this question after a minimum of ten seconds. The evalua-
tions were split into two groups of 15 by an attention check
question. Therefore, each of the 66 datasets were evaluated
68.18 times on average, while each of the 99 ground truth
datasets was evaluated 30 times on average.

Data Preparation
To select the datasets in our benchmarking test set, we first
randomly surfaced a set of candidate datasets that were
visualized as either a bar, line, or scatter chart. Then, we
removed obviously incomplete visualizations (e.g. blank vi-
sualizations). Finally, we removed datasets that could not
be visually encoded in all three visualization types without
losing information. From the remaining set of candidates,
we randomly selected 33 bar charts, 33 line charts, and 33
scatter charts.

Aswe cleaned the data, we adhered to four principles: mod-
ify the user’s selections as little as possible, apply changes
consistently to every dataset, rely on Plotly defaults, and
don’t make any change that is not obvious. For each of
these datasets, we modified the raw column names to remove
Plotly-specific biases (e.g. removing “,x" or “,y" that was
automatically append to column names). We also wanted to
make the user evaluation experience as close to the original
chart creation experience as possible. Therefore, we changed
column names from machine-generated types if they are
obvious from the user visualization axis labels or legend
(e.g. the first column is unlabeled but visualized as Sepal
Width on the X-axis). Because of these modifications, both
the Plotly users and the Mechanical Turkers accessed more
information than our model.

We visualized each of these 99 datasets as a bar, line, and
scatter chart. We created these visualizations by forking the
original Plotly visualization then modifying Mark Types
using Plotly Chart Studio. We ensured that color choices and
axis ranges were consistent between all visualization types.
The rest of the layout was held constant to the user’s original
specification, or the defaults provided by Plotly.
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Figure S6: Experiment flow. The original user-generated vi-
sualizations are highlighted in blue, while we generated the
visualizations of the remaining types. After crowdsourced
evaluation, we have a set of votes for the best visualization
type of that dataset. We calculate confidence intervals for
model scores through bootstrapping.



(a) Feature importances for two visualization-level prediction tasks. The second column describes how each feature was ag-
gregated, using the abbreviations in Table S2c.

# Visualization Type (C=2) Visualization Type (C=3) Visualization Type (C=6) Has Shared Axis (C=2)

1 % of Values are Mode std Entropy std Is Monotonic % Number of Columns
2 Min Value Length max Entropy var Number of Columns Is Monotonic %
3 Entropy var String Type % Sortedness max Field Name Length AAD
4 Entropy std Mean Value Length var Y In Name # # Words In Name NR
5 String Type has Min Value Length var Y In Name % X In Name #
6 Median Value Length max String Type has # Shared Unique Vals std # Words In Name range
7 Mean Value Length AAD Percentage Of Mode std # Shared Values MAD Edit Distance mean
8 Entropy mean Median Value Length max Entropy std Edit Distance max
9 Entropy max Entropy mean Entropy range Length std
10 Min Value Length AAD Length mean % of Values are Mode std Edit Distance NR

(b) Feature importances for four encoding-level prediction tasks.

# Mark Type (C=2) Mark Type (C=3) Mark Type (C=6) Is Shared Axis (C=2) Is X or Y Axis (C=2)

1 Entropy Length Length # Words In Name Y In Name
2 Length Entropy Field Name Length Unique Percent X In Name
3 Sortedness Field Name Length Entropy Field Name Length Field Name Length
4 % Outliers (1.5IQR) Sortedness Sortedness Is Sorted Sortedness
5 Field Name Length Lin Space Seq Coeff Lin Space Seq Coeff Sortedness Length
6 Lin Space Seq Coeff % Outliers (1.5IQR) Kurtosis X In Name Entropy
7 % Outliers (3IQR) Gini Gini Y In Name Lin Space Seq Coeff
8 Norm. Mean Skewness Normality Statistic Lin Space Seq Coeff Kurtosis
9 Skewness Norm. Range Norm Range Min # Uppercase Chars
10 Norm. Range Norm. Mean Skewness Length Skewness

Table S3: Top-10 feature importances for visualization- and encoding-level prediction tasks. Feature importance is determined
bymean decrease impurity for the top performing random forestmodels. Colors represent different feature groupings: dimen-
sions ( ), type ( ), statistical [Q] ( ), statistical [C] ( ), sequence ( ), scale of variation ( ), outlier ( ), unique ( ),
name ( ), and pairwise-relationship ( ).
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